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Abstract—Numerical solutions for natural convection in a vertical, porous annulus are reported for the case
when the inner wall is heated by applying a constant heat flux. This results in a higher rate of heat transfer
compared to theisothermal heating. The higher the aspect ratio, the larger is this difference whereas the effect of
radius ratio is just the reverse. Though the heat transfer rate increases with the curvature, the exponent p in
Nu = C Ra*™A~"«?, is a strong function of the radius ratio, «. In the boundary-layer regime, p decreases
logarithmically from a peak value at x = 1. This brings the annulus results close to the cylinder solutions at
large radius ratios. The peak temperature in the enclosure never exceeds twice the mean temperature.

1. INTRODUCTION

ConveCTIVE heat transfer in differentially heated,
vertical, annular enclosures filled with saturated,
porous media is a topic of many recent investigations
owing to its importance in several geophysical and
technological applications. Consequently, several
analytical, numerical and experimental investigations
have been reported for a vertical, concentric annulus
whose inner wall is heated and whose outer wall is
isothermally cooled, the top and bottom being
insulated [1-9]. Though the experiments have been
conducted for both the constant temperature [7,8] and
the constant heat flux [4, 9] boundary conditions, the
theoretical studies are limited to only the isothermally
heated inner wall [ 1-3, 5-7]. A detailed review of these
works has recently been presented by Prasad et al. [9].
The purpose of the present work is to study
numerically the natural convection in a vertical
annulus filled with a saturated, porous medium when
its inner wall is heated by applying a constant heat flux.
To examine, the effects of the heated wall boundary
condition on the temperature and flow fields, the local
heat transfer rates and the overall Nusselt numbers,
calculations have been made for wide range of
governing parameters. The effects of these parameters
onthe peak temperaturein the enclosure have also been
studied in order to obtain an upper bound. Results have
been further analyzed to characterize the situations
when the heat transfer in an annulus is close to that fora
vertical cylinder embedded in an infinite medium.

2. FORMULATION

Consider a fluid-saturated, porous layer enclosed by
two concentric cylinders whose inner wall is heated by
applying a constant heat flux and the outer wall is
isothermally cooled, the top and bottom being
insulated (Fig. 1). In the porous medium, Darcy’s law is
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assumed to hold, the fluid is assumed to be a normal
Boussinesq fluid, and the viscous drag and inertia terms
in the equations of motion are neglected because their
magnitudes are of small order compared to other terms
for low Darcy numbers and low particle Reynolds
numbers.

With the above assumptions, the conservation
equations for mass, momentum and energy for steady,
axi-symmetric flow in a homogeneous, isotropic,
porous medium reduce to [6]
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FiG. 1. Vertical annulus, coordinate system and thermal
boundary conditions (g is uniform heat flux applied on the
inner wall).
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NOMENCLATURE
A aspect ratio, L/D v fluid velocity in z-direction,
¢ specific heat of fluid at constant pressure [«L/D*(yR+ D](0¢/0R)[m s~ ]
[Jkg 'K '] z  axial coordinate [m]
C  constant for equation (7) Z  dimensionless axial distance, z/L.
D gap width of porous annulus, r,—r; [m]
g  acceleration due to gravity [m s~ %]
h  heat transfer coefficient on inner wall Greek symbols
(Wm 2K™1] o thermal diffusivity of porous medium
h average heat transfer coefficient on k/pc, [m?s~ 1]

vertical wall [Wm~2K™']

K  permeability of porous medium [m?]

k  effective thermal conductivity of the
saturated porous medium [Wm~! K™!]

L height of porous medium [m]

N number of iterations

local Nusselt number on heated wall, hz/k

average Nusselt number, hD/k

P pressure [Pa]

Prandtl number, v/a

q constant heat flux applied on the inner
wall [Wm™ 2]

Q  heat transfer rate [W]

r radial coordinate [m]

R dimensionless radial distance, (r —r;)/D

Ra* Rayleigh number, (gSKDAT)/(va)

Rayleigh number based on heat flux,

(9BKD*qg)/(vak)

T  temperature [K]

AT temperature difference across annulus
[K]; (T,— T.), for constant temperature,
and (T, — T,), for constant flux heating

u fluid velocity in r-direction,

—[o/D(yR+DI(@Y/0Z)ms™]

B isobaric coefficient of thermal expansion
of fluid [K 1]

¥ radius ratio parameter, D/r; = k—1

0  dimensionless temperature (T — T,)/(gD/k)

v kinematic viscosity of fluid [m? s~ 1]

x  radius ratio, r /r;

p  density of fluid [kg m ™3]

Yy’ streamfunction

Y dimensionless streamfunction, (D/ar, L)’
Subscripts

cond conduction

cyl cylinder embedded in an infinite porous
medium

i inner wall (heated)

iso isothermally heated annulus

1 local value

L based upon annulus height, L

m  mean on the inner wall

maximum

o outer wall (cold)

based on outer radius, r,

w  wall

The relevant hydrodynamic and thermal boundary
conditions are:

y=0, 80/)R=—1 at R=0 (3a)
=0, 0=0 at R=1 (3b)
W=0, 3/0Z=0 at Z=0andZ=1 (30

It may be noted that the above approach of
formulating the vertical annulus problem and
introducing the dimensionless parameters reduces the
present problem to a vertical cavity just by substituting
y=0 or k=1 The advantage of the present
formulation is that the vertical annulus can simply be
treated as an extension of the rectangular cavity where
an additional geometric parameter, the radius ratio
needs to be considered.

3. NUMERICAL METHOD

Finite-difference equations are derived from equa-
tions (1) and (2) by integration over finite area

elements, following a procedure outlined by Gosman
et al. for axi-symmetric flows [11]. This introduces
upwind differences for the convective terms in the
energy equation. The successive substitution formulae
derived in this way satisfy the convergence criteria and
are quite stable for many circumstances [11, 12]. For
solving the system of algebraic equations thus ob-
tained, a point iterative method is used. The solution
technique is well described in the literature and has
been widely used for recirculating flows. The
applicability of the method and its accuracy for the
convective heat transfer in annular and rectangular
enclosures has already been discussed elsewhere [6, 10].

For the present work, uniform mesh sizes have been
used for both x- and y-directions provided the Rayleigh
number is small, usually less than 200. For moderately
high and high Rayleigh numbers (Ra* > 200), non-
uniform grids with fine mesh near the walls, are used.
For the trial cases, the selected mesh sizes gave the
average Nusselt numbers within 2% of the asymptotic
values predicted by the calculations with much finer
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grids when Ra* and « are not very large. For high
Rayleigh numbers, Ra* > 2000 and large radius ratios,
k 2 10,a variation of 3%, has been accepted to keep the
computational costs low. The following are the grid
fields used for the present calculations :

A 1,2 5 10 20
Grid field 31 x 31 31 x41 27 x 41 21 x41 or 27 x 41.

In general, the over-relaxation of temperature helps
in obtaining faster convergence. The over-relaxation
parameter varies from 1.95 to 1 when Ra* is increased
from a very low to high values. At high Rayleigh
numbers, Ra* > 2000, the under-relaxation of the
streamfunction is more helpful. Based on the trial
results for various combinations of Ra*, 4 and «, a
convergence criterion of 0.05% or lesser change in both
0 and ¥ at all nodes in the domain has been selected to
test the convergence of the iterative scheme.

To further check the accuracy of the numerical
results, an overall energy balance has been used for the
system which compares the heatrejected atr = r to the
energy input at r = r;. Generally, the energy balance is
achieved within 2%,. However, for large values of Ra*
and «, the results have been accepted if the energy
balance is satisfied within 49.

To select a suitable representation for the constant
flux boundary condition on the heated wall, the
computations were done with two-, three-, four- and
five-point derivatives for various combinations of Ra*,
A and « (Table 1). It was observed that a four-point
derivative produces better energy balance across the
enclosure, compared to two- and three-point deriva-
tives without any appreciable impact on the
convergence rate. A five-point derivative resulted in a
marginal improvement over the four-point derivative.
Hence, for the present computations, the four-point
derivative (3rd-order accurate) has been used for the
zero and constant heat flux boundary conditions.

Another important aspect of the present compu-

Table 1. Effects of two-, three-, four-, and five-point derivatives
on the computational results

Ra* 10? 2x10®  2x10° 10*
A 1 1 10 5
K 2 10 20 2
Two Nt 283 324 131 307
points %E 10.24 12.29 12.54 12.11
Nu 2524 11.108 8.556  10.510
Three N 2% 328 152 310
points  %E 1.35 3.08 2.32 3.69
Nu 2655  11.739 9227  11.054
Four N 300 331 157 313
points % E 0.33 2.00 0.59 2.85
Nu 2670 11.814 9.356  11.103
Five N 304 335
points  %E 0.14 1.85
Nu 2672 11.820

t N:number of iterations, E: energy balance.

tational scheme is that 2-3 times more CPU time is
required for the constant heat flux boundary condition
compared to that for the constant temperature case. A
detailed discussion on the other aspects of the present
computational technique are presented in refs. [6, 10].

4. RESULTS AND DISCUSSION

Numerical results for a vertical annulus with
constant heat flux on theinner wall, have been obtained
for wide range of Rayleigh number, aspect ratio and
radius ratio. To examine the effects of the heated wall
boundary conditions, these results have been
compared with the heat transfer data for the isothermal
heating, either obtained from ref. [6] or recalculated to
match the corresponding values of Ra*, 4 and k. Since
the present resultsfor 4 = 14.4,x = 3.5and 4 = 11.08,
k=14 have already been compared with the
experimental data elsewhere [9], no attempt has been
made here to compare the two results. The primary
objectives of the present study are to characterize the
effects of the curvature and the heated wall boundary
condition.

4.1. Temperature and flow fields

It is now well-established that the introduction of
curvature effects disturbs the centro-symmetric
property of the temperature and flow fields observed
in the case of an isothermally heated, vertical cavity
(x =1 [1, 2, 5-7]. For fixed values of Ra* and A4, an
increase in radius ratio produces a large temperature
gradient near the hot wall, and a strongly stratified
medium in the upper region of the annulas [6, 7]. The
larger the radius ratio, the stronger is the convective
flow near the top edge of the cooled wall, which results
in a shift of the so-called core from the central region to
the right top corner [6].

In the case of a vertical cavity (x = 1), the change in
the boundary condition from the constant temperature
to a uniform heat flux produces very similar effects on
the temperature and velocity fields [10]. It is thus
reasonable to expect that the curvature effects
combined with the constant heat flux boundary
condition will produce much stronger asymmetric
behavior, and will result in a larger temperature drop
across the inner boundary layer and higher velocities in
the top right corner.

Inorder to facilitate a direct comparison between the
temperature and flow fields for the isothermal and
uniform flux heating, the isotherms and streamlines for
Ra* ~10* (Ra* =28x10%, A=1 and k = 6 are
presented in Fig. 2. These values of Ra*, A and are the
same as those for ref. [6, Fig. 2¢]. It is observed that a
change in the boundary condition from the constant
temperature to a constant heat flux has resulted in a
much thinner thermal boundary layer on the inner
wall. This produces a thicker cold layer in the bottom
region and a stronger stratification in the upper layers.
The effective sink temperature for this boundary layer
has thus decreased which results in a higher rate of heat
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FIG. 2. Streamlines and isotherms for Ra* = 2.8 x 10* (Ra* ~ 10%), A = 1 and x = 6 (A8 = 0.005, Ay = 5);
Compare with Fig. 2cin ref. [6].

transfer for the constant flux heating ; 8%, increase over
the isothermal heating for the present values of Ra*, A
and x (Fig. 2). An average temperature outside the
boundary layer may be considered as the effective sink
temperature for the present discussion.

This sharp drop in temperature across the inner
boundary layer may also be observed in Fig. 3, where
the dimensionless temperature, 0, is plotted against R
for Ra* =10° and 10% and x =2, 5 and 20. The
temperature at mid-height drops to less than 259 of its
wall value, 8, within 20% of the cavity width when Ra*
= 10* and k = 2. If x is increased to 20, the drop in
temperature may be as large as 829, within the same
distance from the inner wall. When both the Rayleigh
number and the radius ratio are large, the stratification
in the upper layers is so strong that 8/8,, drops to a very
small value in a large portion of the annulus, for
example, 8/6,, < 0.25 for R > 0.2 and Z < 0.85 when
Ra* = 10* and x = 20 (Fig. 3).

Anyincrease in Rayleigh number further strengthens
the stratification in the upper region and results in a
larger temperature gradient on the hot wall (Fig. 3).
Qualitatively, the effects of Ra* and A are very similar

to what have already beenreported for the isothermally
heated annulus [1, 2, 5-7].

The above asymmetric behavior of the temperature
field results in a flow field where the velocities are quite
large near the top edge of the cold wall, and are very
small in the lower region (Fig. 2). The center of the core
(apoint of zero velocity) has moved toward the right top
corner producing a strong velocity boundary layer on
the cold wall. This behavior is further strengthened by
an increase in Ra* and/or x [6, 7].

4.2. Heated wall temperature

Since the temperature distribution on the heated wall
and the peak temperature, 6, at R =0, Z = 1, are of
considerable importance in the case of constant flux
heating, the dimensionless wall temperature, 0, is
plotted against Z in Fig. 4. An increase in Rayleigh
number beyond zero (conduction) distorts the
horizontal temperature profile (Fig. 4a) in such a way
that 6, decreases in the lower portion of the heated wall,
and increases in the upper region. In general, ,, at any
location is observed to decrease with an increase in Ra*
(Fig.4). This does not mean that the actual temperature,
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FiG. 3. Effects of Rayleigh number and radius ratio on temperature distributions at Z = 0.5 and 0.85.
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FiG. 4. Variation in heated wall temperature for various
Rayleigh numbers, for (a) k = 10 and (b) 4 = 10.

T,,, continually decreases when Ra* is increased. It is
interesting to find out the effects of power input, g,
cavity width, D, permeability, K, and the thermo-
physical properties, v, p¢, §, ¢ and k on the wall tem-
perature, T,,. From the definition of Ra* it is clear that
if the Rayleigh number is increased by changing

the thermophysical properties, v, p;, B, ¢, and the
permeability, K, the temperature, T, at any given
location will decrease. This is primarily due to the
enhancement in heat carrying capacity of the fluid at
high Ra*. On the other hand, if the Rayleigh number is
enhanced by increasing g or D, or by decreasing &, the
actual wall temperature will increase. The rate of
change (increase or decrease) in the wall temperature,
T,, is a strong function of the Rayleigh number. The
higher the Rayleigh number, the smaller is the rate of
change in T, (Fig. 4).

Generally, the temperature, 8, at any given location
Z,increases with A (Fig. 4a), the change being minimal
at Z = 0. Owing to the low velocities in the left top
corner and the adiabatic boundary condition at the top
wall, the temperature gradient, d6,,/0Z, near the top
edge is much sharper for larger aspect ratios.
Furthermore, for any fixed values of Ra* and A, the
dimensionless temperature, ,,, decreases substantially
with the increase in curvature (Fig. 4b) primarily
because an increase in radius ratio for fixed D is always
associated with an enhancement in the ratio of outer
and inner surface areas. Another interesting effect of the
radius ratio is the smoothening of temperature profile.
The temperature gradient, 06,/0Z, is observed to
decrease with an increase in k. For low Ra*, the
temperature, 8, is almost constant for a large portion
of the inner wall when the radius ratio is large (see the
curve for Ra* = 102, k = 20). Even at high Rayleigh
numbers, such as Ra* = 10, the gradient 96,,/6Z is
very small when the curvature effects are strong. The
sharp temperature gradients near the top and bottom
edges are also modified by an increase in k (Fig. 4b).

From the above discussion, it can be easily concluded
that the peak temperature, f,,,, increases with the
Rayleigh number and/or the aspect ratio, but
continually decreases with an increase in radius ratio.
Since the mean temperature on the heated wall, 6,,, is
usually known (to be discussed later), an appropriate
way to study the variation in 8,,,, may be to consider a
normalized peak temperature 0,,,./0,.. The tabulated
values of 8,,,,/6,, (Table 2), indicate that the normalized
peak temperature continually increases with Ra*, but
decreases with an enhancement in the curvature. The
effect of aspect ratio is not straight-forward. Depending
on Ra*, there exists an aspect ratio for which the peak
temperature is the largest. The higher the Rayleigh
number, the smaller is the aspect ratio for (6,,,./0,m)max
(Table 2). For the present range of parameters the

Table 2. Variation in the normalized peak temperature, 8,,,,/6,,

Ra* Ra*
A K 20 10? 103 10* K A 20 102 103 10*
2 1.330 1.548 1.804 1.805 1 1.125 1.387 1.734 1.930
3 1.269 1.489 1.743 1.743 2 1.221 1.511 1.811 1.879
10 S 1.192 1413 1.665 1.665 5 5 1.231 1.532 1.762 1.768
10 1.107 1.303 1.565 1.574 10 1.192 1413 1.665 1.665
20 1.055 1.203 1.389 1.502 20 1.145 1.291 1.479 1.594
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normalized peak temperature is maximum when Ra*
= 10*and k = 1. The upper bound for this temperature
ratio is, thus, 1.932 which exists at 4 =1 [10]. In
general, the peak temperature, 0,,,,, will never exceed
20, as long as Ra* < 10*and 4 > 1.

4.3. Local heat transfer rate
A quantity of practical interest is the local heat flux
on the cold wall,

q,/q = —030/0R  at

This normalized local heat flux is presented in Fig. 5 for
A = 1and 10. It is observed that a large percentage of
heatis rejected within asmall distance from the top edge
when the radius ratio is small. An increase in radius
ratioresultsinlower heat flux near the top edge whereas
an increase in aspect ratio has the reverse effect. The
taller the cavity, thelarger is the fraction of heat rejected
near the top edge (Fig. 5). The Jocal heat flux in the top
region further increases with the Rayleigh number [107.

R=1 4)

4.4. Heat transfer results
Based on the mean temperature difference T, ;— T;,
an average Nusselt number on the inner wall is
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This Nusselt number can be directly used to compare
the present heat transfer rates with those for the
isothermally heated annulus by obtaining a Rayleigh
number based on the mean temperature difference,
Toi—T

Ra* = Ra*/Nu. (6)

Secondly, this Nusselt number is also important for
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design purposes because it gives the mean temperature,
0., [equation (6)] which, in turn, provides the order of
temperatures to be encountered for any particular
values of Ra*, 4 and x. The bounds of the temperature
are then known.

Figures 6a—e present the average Nusselt number,
Nu, for A =1, 2, 5, 10 and 20. At very low Rayleigh
numbers (conduction regime), the Nusselt number

30 T T T
L Ra®sxi0?

2x10%

rlllﬂ

|Jllll

5 ]

20

(e)

i0® 10* 10°

FIG. 6. Curvature effects on average Nusselt number, Nu, on the inner wall, @A=1,b)A=2)A=35
(d) A =10, and (e) 4 = 20.
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approaches the conduction value, (x — 1)/In (k), for all
aspect ratios. Anincrease in Rayleigh number is always
associated with the increase in heat transfer rates, but
the rate of increase strongly depends on the aspect and
radius ratios, particularly for small Rayleigh numbers.
The higher the values of 4 and k, the lower is the rate of
increase in Nu with Ra* primarily because the flow
regimes get extended (in terms of Ra*) when the aspect
and radius ratios are increased [ 6]. In fact, Nu is almost
constant up to Ra* = 200 when 4 = 20 and x = 10 or
A =10and k = 20.

The above extension in the conduction and asymp-
totic flow regimes (refer to [13, 14] for the defini-
tions) delays the start of the boundary-layer regime. The
higher the aspect and/or radius ratios, the larger is
the Rayleigh number required for the boundary-layer
flow regime to start. The flow regime criteria for the
isothermally heated annulus [6] can be conveniently
used for the present problem without any appreciable
error.

In the boundary-layer regime, the slope of the In (Nu)
vs In (Ra*) curve is almost constant, though the effects
of 4 and « on this slope cannot be ruled out. It is thus
possible to obtain a correlation as

Nu=CRa*" A" kP (7

where exponents m,n and p, and constant C may
depend on Ra*, 4 and «. This correlation may further
be modified to provide a relation between the Nusselt
and Rayleigh numbers based on the temperature
difference :

Nu=C, Ra* A°«, 8)

where C, = CY0=m r = m/(1 —m), s = nj(1 —m) and
t=p/(1—m).

Curvature effects. Itisevident from Figs. 6a—e that the
heat transfer rate increases with the curvature. This
increase in the Nusselt number has been caused by the
reduction in the effective sink temperature for the inner
boundary layer when k isincreased beyond unity, and is
consistent with the modifications in the temperature
and flow fields (Section 4.1).

To characterize fully the curvature effects, the
Nusselt numbers for 4 = 5 are plotted against x in Fig.
6¢c. For pure conduction, the slope of this curve
continually increases with k. However, an increase in
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Ra* reverses this behavior provided the aspect and
radius ratios are not large such that the convective flow
isin the conduction regime. For example, an increase in
Ra* from zero to 50 results in a substantial decrease in
the slope at k = 1, but when k > 15, the slope is very
close to that obtained for pure conduction (Fig. 6c). At
high Rayleigh numbers, the slope of this curve
continually decreases with an increase in x provided the
boundary-layer flow is maintained throughout.

Since the slope of In (Nu) vs In (k) curve varies in a
complex manner with Ra*, A and , this slope has been
calculated for 1 < k<20, and A =1 and 10 and is
presented in Table 3. It may be noted that this slope is
equal to the exponent p in equation (7), and has been
obtained by computing Nusselt numbers for two close
values of k corresponding to each radius ratio listed in
Table 3. For pure conduction, p monotonically
increases from 0.501 at k =1 to 0.719 at x = 20,
whereas an increase in Ra* results in a decrease in p
until the boundary-layer flow is established. For
example, when A = 10 and k = 1, p decreases to 0.296
at Ra* = 103, beyond which the change is minimal. For
asquareannulus, 4 = 1,theexponent pdecreasesto 0.3
at Ra* = 104, a value close to 0.296. When the radius
ratio is increased beyond unity, the slope is found to be
no longer constant at high Ra*. In fact, a close look at
the decreasing p when Ra* is increased, indicates that
the exponent p asymptotically approaches a constant
value for any fixed aspect and radius ratios. The
asymptotic values of pare 0.296 and 0.269 forx = 1 and
1.2, respectively. For k = 1.5, it may be very close to
0.232. However, the present calculations do not provide
the asymptotic value of p for x > 1.5.

The effects of aspect ratio on the slope of In (Nu) vs
In (x) curve strongly depends on the convective flow
regime or Ra*.If the Rayleigh number is very high such
that the boundary-layer flow is maintained irrespective
of the aspect ratio, the exponent p is observed to be a
weak function of A. For example, when Rg* = 10* and
K = 2, pis equal to 0.208 and 0.203 for 4 = 1 and 10,
respectively (Table 3). This is not true if the curvature
effects are strong. At k = 4, p is larger for A = 10 than
that for A = 1. The difference further increases with an
increase in , and is primarily because an increase in
height-to-width ratio beyond a certain value reverses
the boundary-layer flow regime to the asymptotic
regime for fixed Ra* and . The change in flow regime

Table 3. Slope of In (Nu) vs In (k) curve {exponent p in equation (7)]

A Ra*x 1 12 15 175 2 25 3 4 5 7 10 15 20
Conduction 0.501 0.515 0.534 0.546 0.557 0.575 0.590 0.612 0.629 0.653 0.677 0.702 0.719
1 10> 0307 — 0295 — 0296 0299 0.303 0311 0328 0377 0429 0470 0.487
104 0300 0273 0241 0223 0208 0.186 0.171 0.154 0.146 0.142 0.147 0.164 0.183
102 0319 — 0324 — 0339 0358 0.384 0426 0458 0.507 0.541 0.548 0.550
10 10> 0296 — 0243 — 0234 0224 0232 0245 0263 0.289 0.350 0413 0457
10* 0296 0.269 0236 0217 0203 0.181 0.170 0.159 0.161 0.169 0.198 0.238 0.276
10° 0296 0269 0232 0209 0.191 0.164 0.146 0.124 0.114 0.109 0.116 0.138 0.160




Numerical study of natural convection in a vertical, porous annulus

0.8 T T T T T T T

Conduction

Ra* = 102

(o]

01 A It ! I i

F1G. 7. Variation in exponent p [equation (7)] with the radius
ratio.

from the boundary layer to asymptotic, with an
increase in A is well established in literature for the
vertical cavities, k = 1 [13].

An interesting aspect of the curvature effects is the
strong dependence of p on the radius ratio. Though p
always increases with k at Ra* = 0, the behavior is just
the reverse when the Rayleigh number is high. In the
boundary-layer regime, the slope p is observed to
decrease with an increase in k ; p being largest at k = 1
(Fig. 7 and Table 3). When Ra* = 10°and 4 = 10, p
asymptotically decreases from 0.296 at k = 1t00.109 at
x = 7 whereas for Ra* = 10* and A = 1, the change in
pisfrom 0.3 to 0.142. This clearly implies that the rate of
increase in the Nusselt number diminishes with an
enhancement in the curvature effects. However, the
exponent p does not decrease forever. In fact, p starts
increasing when the radius ratio is increased beyond a
certain value (Table 3 and Fig. 7). This reversal in the
diminishing effect of x is caused by the change in the
flow regime from the boundary layer to asymptotic.
The critical radius ratio for this change in the flow
regimes is characterized by dp/dx = 0, and is a strong
function of Ra* and A. The smaller the Rayleigh
number and/or the higher the aspect ratio, the smaller is
the value of this critical radius ratio.

Fortuitously, the curves for In (p) vs In (x) exhibit
straight line behavior (Fig. 7) when Ra* is large and «c is
small,i.e. when the flow isin the boundary-layer regime.
A correlation for p may thus be obtained as

p=0305k"0°%"% k<4 )

for Ra* = 10° and 4 = 10. The above correlation
predicts the tabulated values of p within 0.7% except for
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k = 1 wherethe differenceis 3%. At = 4, the predicted
value is 4% lower than the numerical value.

The above equation (9) presents a simple and explicit
relation between p and k. Though this type of
expression is always sought, it is difficult to obtain a
generalized correlation for wide range of parameters
since the constant and the exponent in equation (9) are
complex functions of Ra* A and k. This strong
dependence of p on k is contrary to the observation of
Thomas and De Vahl Davis [14] and others that pis a
constant for the natural convection in a fluid-filled,
vertical annulus. Furthermore, the Rayleigh number at
which the flow regime changes, also depends on
the radius ratio. For fixed values of Ra* and A, the
boundary-layer flow regime at k¥ = 1 changes to the
asymptotic regime and then to the conduction regime
as the radius ratio is increased. This also does not agree
with the observation [14] that the flow regime criteria
are independent of the radius ratio.

Effects of aspect ratio. As is well-established, the

Nusselt number for a vertical cavity (x = 1) decreases
with an increase in the aspect ratio beyond a certain
value between 0.5 and 2, which is a function of the
Rayleigh number [13]. The higher the Rayleigh
number, the lower is the aspect ratio for (Nu),,,. A
change in the heated wall boundary condition from the
constant temperature to the uniform heat flux does not
produce any appreciable effects on this behavior [10].
Evidently, the slope of In (Nu) vs In (4) curve or the
exponent nin equation (7) for fixed Ra* and «, is zero at
Acritica]'
To visualize the effects of radius ratio on the
functional relationship of Nusselt number with A, the
exponent n has been listed in Table 4fork = 1and 10.1t
is observed that the critical aspect ratio for (Nu),,,, is
less than unity when Ra* = 10* and ¥ = 1. Anincrease
in the radius ratio for fixed Ra* further reduces the
value of A,y (Table 4, also [7]). Furthermore, the
absolute value of n always increases with the aspect
ratio when the flow is in the boundary-layer regime
(Table 4). The rate of increase in n, i.e. dn/0A, is highest
at A and is observed to decrease when the height-
to-width ratio increases. This reduction in dn/dA is
essentially a result of the diminishing end effects at
higher aspect ratios. In fact, n increases from 0.092 at
A =1t00.342 at 4 = 50 when x = 1. It may be noted
that Prasad and Kulacki [10] have reported an
average value of n = 0.328 based on the computations
for A =5, 10, 20 and 50.

Table 4. Slope of In (Nu) vs In (4) curve [exponent n in equation (7))

K Ra*/A 1 L5 2 3 4 5 7 10 20 50
1 10* 0092 0.188 0237 0277 0295 0307 0317 0323 0333 0342
103 0012 0106 0165 0201 0226 0230 0236 0226 0203 0.151
10 10* 0.131 0205 0240 0264 0275 0282 0285 0285 0283 0272
10° 0205 0249 0272 0289 0297 0301 0305 0301 0297 0.295
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An increase in x results in higher values of n for fixed
Ra* and A. However, the asymptotic relationship
between n and 4 does not change as long as the
boundary-layer flow is maintained. Once, both the
aspectand radiusratios are large such that the flowisno
more in the boundary-layer regime for given Ra*, the
slope n starts decreasing. The gradient dn/dA4 = 0 may
thus characterize the change in flow regime from the
boundary layer to asymptotic.

4.5. Comparison with cylinder solutions

As already reported [6, 7], the heat transfer rate for
an annulus asymptotically approaches that for a
vertical cylinder embedded in an infinite medium at 7,
when the radius ratio is increased beyond unity. This
behavior is consistent with the observed effects of
curvature on the temperature field. As noted earlier, the
effective sink temperature for the inner boundary layer
decreases very fast with an increase in x, approaching
very close to T, at large values of k. Evidently, the effect
of the outer wall on the heat transfer at the inner surface
is minimal at large radius ratios. This diminishing effect
of the presence of outer wall is also exhibited in Fig. 6¢
where p — a constant value when k — co. However, for
the annulus results to be close to the cylinder solutions,
the end effects should be small. In can thus be expected
that the difference between the two results will decrease
as A— oo. It is important to note that the above
behavior is true only when the convective flow is in the
boundary-layer regime.

To substantiate the above qualitative discussions
and to study the effects of Ra*, 4 and x on this aspect of
the annulus results, the heat transfer results are
compared with the cylinder solutions obtained from
Minkowycz and Cheng [15] in Figs. 8a and b. Here,
(Nu),,, is observed to be 297 higher than Nu when
k=2, A =10 and Ra* = 103. The variation reduces
to only 10%, at x = 5 and to 2.2% at k = 20. However,
the difference at x = 20, increases to 169, when the
Rayleigh number is reduced to 110. These results
clearly exhibit that Nu — (Nu),,, when Ra* and x — 0.
As noted earlier, the slope of In (Nu) vs In (k) curve, p,
decreases logarithmically [equation (9)], ie. p
asymptotically approaches zero as k- oco. It is
interesting to note that a similar behavior is exhibited
by the solutions for the embedded cylinder [15].

The effect of aspect ratio on the difference between
Nuand (Nu),,, can be observed in Fig. 8b. Here, (Nu),,
is 25%, higher than Nu when Ra* = 500, x = 10 and
A = 1. The agreement is within 6% at 4 =5, and
within 13% at A = 20. It may thus be concluded that
Nu — (Nu),,, as the aspect ratio is increased. A larger
difference at A = 20 is essentially due to the fact that
Ra* = 500 is not sufficient to maintain the boundary-
layer flow at k = 10 and A4 = 20. In fact, an increase in
Ra*to 5 x 10°reduces thedifference toonly 5%at 4 = 20.
Hence, the higher the aspect ratio, the smaller is the
difference between Nu and (Nu).,.. The only constraint to
this behavior is that the boundary-layer flow must exist on
theinner wall. From these results (Figs. 8a and b), itiseasy
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FI1G. 8. Annulus results compared with the cylinder solutions {15]
for(a) 4 = 10,and (b) x = 10.

to conclude that the Nusselt number for the annulus is
very close to that for the embedded cylinder when
Ra* > 500, A > 5and k > 10 provided the flow is in the
boundary-layer regime.

4.6. Constant temperature vs constant heat flux

To characterize the effects of heated wall boundary
condition on the overall heat transfer rate, the present
Nusselt numbers are compared with those for the
isothermally heated annuli in Figs. 9a and b. As
expected, the two Nusselt numbers are equal when the
flow is in the conduction regime. An increase in
Rayleigh number enhances the heat transfer rates for
both types of heating, but the rate of increase is larger in
the case of constant heat flux. This agrees with the
general observation that the Nusselt number for a
cavity is higher for the uniform heat flux boundary
condition [10]. It must be noted that the above
conclusion is based on the consideration that (T, ; — T,)
is equal to (T,,, — T,). The higher rate of heat transfer in
the present case, is consistent with the modification in
temperature field owing to a change in the boundary
condition from the constant temperature to a constant
heat flux.

For fixed values of A and «, the In (Nu) vs In (Ra*)
curves for the two types of heating are observed to be
almost parallel beyond a certain Rayleigh number
(Figs. 9a and b). It is thus evident that the exponent r in
equation (8) is a weak function of the heated wall
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FiG. 9. Effects of the heated wall boundary conditions on Nusselt number (a) 4 = 10, and (b) x = 2.

boundary condition once the flow is in the boundary-
layer regime. The Nusselt number plots for various
values of A and x (Figs. 9a and b) further indicate that
the aspect and radius ratios do not have any
appreciable effect on the exponent r. In fact, for a tall
cavity(4 > 2,k = 1) heated by applying a uniform heat
flux, Prasad and Kulacki [10] have obtained r = 0.527
which is very close to the value of r (0.52 or 0.5) for the
isothermal heating [6 and others].

It can further be observed from Fig. 9a that the
difference between Nu and Nu,,, decreases with an
increasein the radius ratio. For 4 = 10, Ra* = 103and
k=1, Nu is 30% higher than Nu,,, whereas the
differenceis only 129 when k isincreased to 10. This has
directly followed from the temperature distribution on
the inner wall. In Fig. 4b, the temperature gradient,
HMT 29:6-C

00,,/0Z — 0 as k — oo except for small distances from
the top and bottom edges. Thus, the asymmetries in the
flow, due to the constant flux boundary condition,
become indistinct when k — co.

The effect of aspect ratio on (Nu— Nu,,,) is just the
reverse. The higher the aspect ratio, the larger is Nu
compared to Nu;,,. For x = 2 and Ra* = 800, Nuis 9%,
higher than Nu, at A = 1. When Aisincreased to 5, the
difference is 22%; which further increases to 28% at A
= 20. These variations in (Nu— Nu,,,) clearly indicate
that the exponents s and ¢ in equation (2) depend on the
heated wall boundary condition.

4.7. Heat transfer correlations
Generalized heat transfer correlations of the form of
equations (7) and (8) are always important for design
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Table 5. Exponents m and n, and constant C for equation (10)

Maximum

K A C m n Ra*> %error
1 0312 0413 0 100 1.66
11 2 0411 0368 0 100 0.75
5€A4<50 0662 0345 0.328 500 2.00
1 0430 0393 O 100 1.00
2 2 0520 0359 © 100 0.58
5€A<20 0812 0.339 0319 500 1.60
1 0512 0382 © 100 1.97
3 2 0.589 0354 0 200 0.29
SKA<K20 0917 0.333 0311 500 2.01
1 0617 0371 0 200 1.21
5 2 0719 0340 O 200 0.69
S5<A<20 1.096 0320 0301 500 1.69
1 0873 0344 0 200 2.31
10 2 0989 0316 0 500% 0.73
5420 1.512 0.293 0279 1000 242
20 S5€KA<10 2.052 0269 0244 1000 3.10

1 Results for vertical cavity (x = 1) are taken from ref. [10].

1 For A > 10, Ra* > 10°.

purposes, and any studies such as the present one
attempt to obtain them. But the task is not easy in the
present case owing to complex functional relationship
between the exponents and the governing parameters.
However, an equation of the form:

Nu=CRa*" A™", forafixed x (10)

has been used to correlate the present results for k = 1,
2,3,5and 10. The values of m, n and C are presented in
Table 5 with the range of Rayleigh number and aspect
ratio to which they are applicable.

5. CONCLUSION

Numerical results for the natural convection in a
vertical, porous annulus with the constant heat flux on
the inner wall, indicate the following:

1. Introduction of curvature disturbs the centro-
symmetric properties of the isothermally heated,
vertical cavity and results in lower effective sink
temperature for the heated wall boundary layer. It
enhances the stratification in the upper region of the
enclosure and results in higher velocities near the
top edge of cold wall. A change in the boundary
condition from the constant temperature to the
constant heat flux further strengthens this behavior.
The heated wall temperature, 0, increases with
Rayleigh number but the change in actual
temperature T, depends on how Ra* is changed.
The temperature 8, at any location decreases with
an increase in radius ratio, but increases with the
aspect ratio.

The peak temperature, (0,),,., increases with the
Rayleigh number whereas the radius ratio affects it
in an opposite manner. However, there exists an
aspect ratio as a function of Ra* and « for which this
peak temperature is maximum. The upper bound for
this temperature is 26,,,, for 1 < 4 < 20.

4.

~

The overall Nusselt number increases with an
increase in the radius ratio, but the rate of increase
diminishes as x — co. The exponent of k in equation
(7), p, is a complex function of Ra*, A and k. In the
boundary-layer regime, p decreases logarithmically
with the increase in .

The above diminishing effect of k brings annulus
results close to the cylinder solutions provided the
flow is in the boundary-layer regime. Generally,
the two results can interchangeably be used with
a reasonable accuracy for Ra* > 500, 4 > 5 and
Kk > 10.

The heat transfer rate for the constant flux case is
higher than that for the isothermal heating. In
boundary-layer regime, the difference (Nu— Nu,,,)/
Nu,, is almost constant. But an increase in the
aspect ratio enhances this difference whereas the
radius ratio has an opposite effect.
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ETUDE NUMERIQUE DE LA CONVECTION NATURELLE DANS UN ESPACE
ANNULAIRE POREUX ET VERTICAL AVEC FLUX SURFACIQUE CONSTANT SUR LA

PADNT INTERNE

DANUL LN L ONIND

Résumé—Des solutions numériques de convection naturelle dans un espace annulaire vertical, poreux sont
données pour le cas de la paroi interne chauffée a densité de flux uniforme. Ces conditions conduisent a un
transfert thermique plus grand que pour le chauffage isotherme. Plus grand est le rapport de forme, plus
marquée est cette difference tandis que Peffet du rapport des rayons est contraire. Bien que le transfert
augmente avec la courbure, Pexposant pdans Nu = C Ra*™ A ~"«” est une fonction forte du rapport des rayons
k. Dans le régime de couche limite, p décroit logarithmiquement a partir d’une valeur maximale pour x = 1.
Ceci amene les résultats de 'espace annulaire proches de ceux du cylindre pour les grands rapports des rayons.
Le pic de température dans 'enceinte ne dépasse jamais deux fois la température moyenne.

NUMERISCHE UNTERSUCHUNG DER NATURLICHEN KONVEKTION IN EINEM
POROSEN RINGRAUM MIT KONSTANTEM WARMESTROM AN DER INNENWAND

Zusammenfassung—Fiir die natiirliche Konvektion in einem senkrechten, pordsen Ringraum werden fir
den Fall konstanten Wirmestroms an der Innenwand numerische Losungen angegeben. Im Vergleich zur
isothermen Innenwand fiihrt diese Anordnung zu einem verbesserten Wirmeiibergang. Je groBer das
Verhiltnis von Hohe zu Spaltweite ist, desto groBer wird die Differenz zwischen den beiden Fillen; dagegen
bewirkt eine VergroBerung des Verhiltnisses von AuBlen- zu Innenradius das Gegenteil. Obwohl der
Wirmeiibergang mit zunehmender Kriimmung besser wird, ist der Exponent p in der Gleichung
Nu = C Ra*™A~"k’ stark vom Radienverhéltnis x abhdngig. Im Grenzschichtbereich nimmt p logarithmisch
ab, sein Maximum liegt bei x = 1. Dies fithrt dazu, daB die Ergebrisse fiir den Ringraum fiir grofle
Radienverhiltnisse denen beim Zylinder gleichen. Die maximale Temperatur im Ringraum ibersteigt die
mittlere nie um mehr als einen Faktor 2.

UYNCJIEHHOE UCCJIEJOBAHUE ECTECTBEHHON KOHBEKLIMUA B BEPTUKAJIBHOM
IMOPUCTOM KOJIBIHEBOM CJIOE C INOCTOSAHHBIM TEIJIOBBIM IMOTOKOM HA
BHYTPEHHEHN CTEHKE

Ansorauus—YucIeHHbIe pelieHus 3aKaYM eCTECTBECHHOM KOHBEKIMHE B BEPTUKANLHOM HOPUCTOM KOMb-
LIeBOM CJI0€ IIPEACTABJIEHBI VIS ClIy4asi, KOTJa BHYTPEHHAA CTCHKA HarpeBaeTcst MOCTOSHHBIM TEMJIOBBLIM
OTOKOM. DTO NPUBOAMT K GOJIbLIEH CKOPOCTH TeMI00OMEHa IO CPaBHEHHMIO C H3OTEPMUYECKHM Harpe-
BOM, NpHYEM pa3HiHe TeM Oounblle, yeM OoJibllie OTHOLUEHME BBICOTHI K Pajuycy, B TO BpeMs KaK
OTHOLLECHNE PafAMyCOB OKa3bIBaeT 0OpaTHOE BIHMSHHE. XOTS CKOPOCTh TEMJIONCPEHOCA YBEIMYMBAECTCH C
KPHBH3HOM’, IOKa3aTe/b CTENECHH p B BhIpaKeHUH Nu = CRa*™A ™ "xk? CyllieCTBEHHO 3aBHCUT OT OTHOLLE-
HHS paguycoB k. B pexxHMe mOrpaHHYHOIO CIIOS p yMEHBIIAETCS JIOTapHGMHUYECKH OT MAaKCHUMAJIbHOIO
3HAYEHUS, COOTBETCTBYIOIIErO Kk = 1. DTO cOamkaeT pe3yNbTaThl WIS KOJBLEBOIO CJIOS MPH GONBIIAX
OTHOILEHHUAX PAAMYCOB C NAHHBIMHM JUIS LWWIMHIApA. MakcUMyM TeMnepaTypbl B 3aMKHYTOM oGbeMe
HUKOTI'J]A HE MPEBbIAECT YABOCHHYIO CPEAHIO TEMIEPATYPY.



