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Abstract-Numerical solutions for natural convection in a vertical, porous annulus are reported for the case 
when the inner wall is heated by applying a constant heat flux. This results in a higher rate of heat transfer 
compared to the isothermal heating. The higher the aspect ratio, the larger is this difference whereas the effect of 
radius ratio is just the reverse. Though the heat transfer rate increases with the curvature, the exponent p in 
Nu = C &*mA-n~P, is a strong function of the radius ratio, K. In the boundary-layer regime, p decreases 
logarithmically from a peak value at K = 1. This brings the annulus results close to the cylinder solutions at 

large radius ratios. The peak temperature in the enclosure never exceeds twice the mean temperature. 

1. INTRODUCTION 

CONVECTIVE heat transfer in differentially heated, 
vertical, annular enclosures filled with saturated, 
porous media is a topic of many recent investigations 
owing to its importance in several geophysical and 
technological applications. Consequently, several 
analytical, numerical and experimental investigations 
have been reported for a vertical, concentric annulus 
whose inner wall is heated and whose outer wall is 
isothermally cooled, the top and bottom being 
insulated [l-9]. Though the experiments have been 
conducted for both the constant temperature [7,8] and 
the constant heat flux [4,9] boundary conditions, the 
theoretical studies are limited to only the isothermally 
heated inner wall [l-3,5-7]. A detailed review of these 
works has recently been presented by Prasad et al. [9]. 

The purpose of the present work is to study 
numerically the natural convection in a vertical 
annulus filled with a saturated, porous medium when 
its inner wall is heated by applying a constant heat flux. 
To examine, the effects of the heated wall boundary 
condition on the temperature and flow fields, the local 
heat transfer rates and the overall Nusselt numbers, 
calculations have been made for wide range of 
governing parameters. The effects of these parameters 
on the peak temperature in the enclosure have also been 
studied in order to obtain an upper bound. Results have 
been further analyzed to characterize the situations 
when the heat transfer in an annulus is close to that for a 
vertical cylinder embedded in an infinite medium. 

2. FORMULATION 

Consider a fluid-saturated, porous layer enclosed by 
two concentric cylinders whose inner wall is heated by 
applying a constant heat flux and the outer wall is 
isothermally cooled, the top and bottom being 
insulated (Fig. 1). In the porous medium, Darcy’s law is 

assumed to hold, the fluid is assumed to be a normal 
Boussinesq fluid, and the viscous drag and inertia terms 
in the equations of motion are neglected because their 
magnitudes are of small order compared to other terms 
for low Darcy numbers and low particle Reynolds 
numbers. 

With the above assumptions, the conservation 
equations for mass, momentum and energy for steady, 
axi-symmetric flow in a homogeneous, isotropic, 
porous medium reduce to [6] 

=&*A; (1) 

+&&[(yR+U;]. (2) 

FIG. 1. Vertical annulus, coordinate system and thermal 
boundary conditions (q is uniform heat flux applied on the 

inner wall). 
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NOMENCLATURE 

A aspect ratio, L/D V fluid velocity in z-direction, 
C specific heat of fluid at constant pressure [crL/D*(yR+ l)l@$/~R)[m s- ‘I 

[J kg-’ K-‘1 Z axial coordinate [m] 
C constant for equation (7) Z dimensionless axial distance, z/L. 
D gap width of porous annulus, r. - ri [m] 

9 acceleration due to gravity [m s-‘1 
h heat transfer coefficient on inner wall Greek symbols 

CWm 1 -2 K-1 u thermal diffusivity of porous medium 

h average heat transfer coefficient on k/PC, [m2 s- ‘1 
vertical wall [W mm2 K-‘1 B isobaric coefficient of thermal expansion 

K permeability of porous medium [m’] of fluid [K-i] 
k effective thermal conductivity of the Y radius ratio parameter, D/ri = K - 1 

saturated porous medium [W m- ’ K- ‘1 0 dimensionless temperature (T- T,)/(qD/k) 
L height of porous medium [m] V kinematic viscosity of fluid [m2 s-i] 
N number of iterations K radius ratio, r,/ri 
Nu, local Nusselt number on heated wall, hz/k P density of fluid [kg mm31 
Nu average Nusselt number, AD/k v streamfunction 
P pressure [Pa] I,+ dimensionless streamfunction, (D/ariL)$‘. 
Pr* Prandtl number, v/a 

4 constant heat flux applied on the inner 

wall [W m-‘1 Subscripts 
Q heat transfer rate [W] cond conduction 
r radial coordinate [m] cyl cylinder embedded in an infinite porous 
R dimensionless radial distance, (r - rJ/D medium 
Ra* Rayleigh number, (gPKDAT)/(m) i inner wall (heated) 
i&* Rayleigh number based on heat flux, iso isothermally heated annulus 

T (gBKD2q)/(v4 1 local value 
temperature [K] L based upon annulus height, L 

AT temperature difference across annulus m mean on the inner wall 
[K] ; (T - To), for constant temperature, max maximum 
and (T,, j - To), for constant flux heating 0 outer wall (cold) 

u fluid velocity in r-direction, r, based on outer radius, r. 

- b/D(rR + 1 M%Pz)b s- ‘I W wall. 

The relevant hydrodynamic and thermal boundary 
conditions are : 

$=o, ao/aR=-1 at R=O (34 

$=O, I??=0 at R=l (W 

+b = 0, aelaz = 0 at Z=OandZ=l. (3~) 

It may be noted that the above approach of 
formulating the vertical annulus problem and 
introducing the dimensionless parameters reduces the 
present problem to a vertical cavity just by substituting 
y = 0 or K = 1. The advantage of the present 
formulation is that the vertical annulus can simply be 
treated as an extension of the rectangular cavity where 
an additional geometric parameter, the radius ratio 
needs to be considered. 

3. NUMERICAL METHOD 

Finite-difference equations are derived from equa- 
tions (1) and (2) by integration over finite area 

elements, following a procedure outlined by Gosman 
et al. for axi-symmetric flows [ 111. This introduces 
upwind differences for the convective terms in the 
energy equation. The successive substitution formulae 
derived in this way satisfy the convergence criteria and 
are quite stable for many circumstances [ll, 121. For 
solving the system of algebraic equations thus ob- 
tained, a point iterative method is used. The solution 
technique is well described in the literature and has 
been widely used for recirculating flows. The 
applicability of the method and its accuracy for the 
convective heat transfer in annular and rectangular 
enclosures has already been discussed elsewhere [6, lo]. 

For the present work, uniform mesh sizes have been 
used for both x- and y-directions provided the Rayleigh 
number is small, usually less than 200. For moderately 
high and high Rayleigh numbers (G* > 200), non- 
uniform grids with fine mesh near the walls, are used. 
For the trial cases, the selected mesh sizes gave the 
average Nusselt numbers within 2% of the asymptotic 
values predicted by the calculations with much finer 
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grids when Ra* and K are not very large. For high tational scheme is that 2-3 times more CPU time is 

Rayleigh numbers, Ra* > 2000 and large radius ratios, required for the constant heat flux boundary condition 

K > 10, a variation of 3% has been accepted to keep the compared to that for the constant temperature case. A 

computational costs low. The following are the grid detailed discussion on the other aspects of the present 
fields used for the present calculations : computational technique are presented in refs. [6, lo]. 

A 1,2 5 10 20 

Gridfield 31x31 31x41 27x41 2lx41or27x41. 4. RESULTS AND DISCUSSION 

In general, the over-relaxation of temperature helps 
in obtaining faster convergence. The over-relaxation 
parameter varies from 1.95 to 1 when E* is increased 
from a very low to high values. At high Rayleigh 
numbers, &* 2 2000, the under-relaxation of the 
streamfunction is more helpful. Based on the trial 
results for various combinations of fi*, A and K, a 
convergence criterion of0.05% or lesser change in both 
0 and $ at all nodes in the domain has been selected to 
test the convergence of the iterative scheme. 

To further check the accuracy of the numerical 
results, an overall energy balance has been used for the 
system which compares the heat rejected at r = rO to the 
energy input at r = ri. Generally, the energy balance is 
achieved within 2%. However, for large values of & * 
and K, the results have been accepted if the energy 
balance is satisfied within 4%. 

To select a suitable representation for the constant 
flux boundary condition on the heated wall, the 
computations were done with two-, three-, four- and 
five-point derivatives for various combinations of & *, 
A and K (Table 1). It was observed that a four-point 
derivative produces better energy balance across the 
enclosure, compared to two- and three-point deriva- 
tives without any appreciable impact on the 
convergence rate. A five-point derivative resulted in a 
marginal improvement over the four-point derivative. 
Hence, for the present computations, the four-point 
derivative (3rd-order accurate) has been used for the 
zero and constant heat flux boundary conditions. 

Another important aspect of the present compu- 

Numerical results for a vertical annulus with 
constant heat flux on theinner wall, have been obtained 
for wide range of Rayleigh number, aspect ratio and 
radius ratio. To examine the effects of the heated wall 
boundary conditions, these results have been 
compared with the heat transfer data for the isothermal 
heating, either obtained from ref. [6] or recalculated to 
match the corresponding values of Ra*, A and K. Since 
the present results for A = 14.4, K = 3.5 and A = 11.08, 
K = 14 have already been compared with the 
experimental data elsewhere [9], no attempt has been 
made here to compare the two results. The primary 
objectives of the present study are to characterize the 
effects of the curvature and the heated wall boundary 

condition. 

4.1. Temperature andjowjelds 
It is now well-established that the introduction of 

curvature effects disturbs the centro-symmetric 
property of the temperature and flow fields observed 
in the case of an isothermally heated, vertical cavity 
(K = 1) [l, 2,5-71. For fixed values of Ra* and A, an 
increase in radius ratio produces a large temperature 
gradient near the hot wall, and a strongly stratified 
medium in the upper region of the annulas [6,7]. The 
larger the radius ratio, the stronger is the convective 
flow near the top edge of the cooled wall, which results 
in a shift of the so-called core from the central region to 
the right top corner [6]. 

Table 1. Effects oftwo-, three-, four-, and five-point derivatives 
on the computational results 

Ra* 10’ 2 x lo3 2x103 104 
A 1 1 10 5 
K 2 10 20 2 

Two Nt 283 324 131 307 
points %Et 10.24 12.29 12.54 12.11 

NU 2.524 11.108 8.556 10.510 

Three 
points & 

296 328 152 310 

I& 
1.35 3.08 2.32 3.69 
2.655 11.739 9.227 11.054 

Four 
points $YE 

300 331 157 313 

i& 
0.33 2.00 0.59 2.85 
2.670 11.814 9.356 11.103 

Five 
points & 

304 335 

Ad 
0.14 1.85 
2.672 11.820 

t N : number of iterations, E: energy balance. 

In the case of a vertical cavity (K = l), the change in 
the boundary condition from the constant temperature 
to a uniform heat flux produces very similar effects on 
the temperature and velocity fields [lo]. It is thus 
reasonable to expect that the curvature effects 
combined with the constant heat flux boundary 
condition will produce much stronger asymmetric 
behavior, and will result in a larger temperature drop 
across the inner boundary layer and higher velocities in 
the top right corner. 

In order to facilitate a direct comparison between the 

temperature and flow fields for the isothermal and 
uniform flux heating, the isotherms and streamlines for 
Ra* z lo3 (&* = 2.8 x 104), A = 1 and K = 6 are 

presented in Fig. 2. These values of Ra*, A and are the 
same as those for ref. [6, Fig. 2c]. It is observed that a 
change in the boundary condition from the constant 
temperature to a constant heat flux has resulted in a 
much thinner thermal boundary layer on the inner 
wall. This produces a thicker cold layer in the bottom 
region and a stronger stratification in the upper layers. 
The effective sink temperature for this boundary layer 
has thus decreased which results in a higher rate of heat 
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FIG. 2. Streamlines and isotherms for z * = 2.8 x lo4 (Ra* E 103), A = 1 and K = 6 (A0 = 0.005, 
Compare with Fig. 2c in ref. [6]. 

A$ = 5); 

transfer for the constant flux heating; 8% increase over 
the isothermal heating for the present values of Ra*, A 
and K (Fig. 2). An average temperature outside the 
boundary layer may be considered as the effective sink 
temperature for the present discussion. 

This sharp drop in temperature across the inner 
boundary layer may also be observed in Fig. 3, where 
the dimensionless temperature, 8, is plotted against R 
for E* = lo3 and 104, and K = 2, 5 and 20. The 
temperature at mid-height drops to less than 25% of its 
wall value, 8,, within 20% ofthe cavity width when & * 
= lo4 and K = 2. If K is increased to 20, the drop in 
temperature may be as large as 82% within the same 
distance from the inner wall. When both the Rayleigh 
number and the radius ratio are large, the stratification 
in the upper layers is so strong that 0/e, drops to a very 
small value in a large portion of the annulus, for 
example, O/e, < 0.25 for R > 0.2 and Z < 0.85 when 
E* = lo4 and K = 20 (Fig. 3). 

Any increase in Rayleigh number further strengthens 
the stratification in the upper region and results in a 
larger temperature gradient on the hot wall (Fig. 3). 
Qualitatively, the effects of fi* and A are very similar 

to what have already been reported for the isothermally 
heated annulus [ 1,2,5-71. 

The above asymmetric behavior of the temperature 
field results in a flow field where the velocities are quite 
large near the top edge of the cold wall, and are very 
small in the lower region (Fig. 2). The center of the core 
(a point ofzero velocity) has moved toward the right top 
corner producing a strong velocity boundary layer on 
the cold wall. This behavior is further strengthened by 
an increase in &* and/or K [6,7]. 

4.2. Heated wall temperature 
Since the temperaturedistribution on the heated wall 

and the peak temperature, 6, at R = 0, Z = 1, are of 
considerable importance in the case of constant flux 
heating, the dimensionless wall temperature, 8,, is 
plotted against Z in Fig. 4. An increase in Rayleigh 
number beyond zero (conduction) distorts the 
horizontal temperature profile (Fig. 4a) in such a way 
that&decreases in the lower portion ofthe heated wall, 
and increases in the upper region. In general, Bw at any 
location is observed to decrease with an increase in & * 
(Fig. 4). This doesnot mean that the actual temperature, 

FIG. 3. Effects of Rayleigh number and radius ratio on temperature distributions at Z = 0.5 and 0.85. 
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FIG. 4. Variation in heated wall temperature for various 
Rayleigb numbers, for (a) K = 10 and (b) A = 10. 

T,, continually decreases when & * is increased. It is 
interesting to find out the effects of power input, q, 
cavity width, D, permeability, K, and the thermo- 
physical properties, v, pr, 8, c and k on the wall tem- 
perature, T,. From the definition of &* it is clear that 
if the Rayleigh number is increased by changing 

the thermophysical properties, v, pr, /?, c, and the 
permeability, K, the temperature, T, at any given 
location will decrease. This is primarily due to the 
enhancement in heat carrying capacity of the fluid at 
high G *. On the other hand, if the Rayleigh number is 
enhanced by increasing q or D, or by decreasing k, the 
actual wall temperature will increase. The rate of 
change (increase or decrease) in the wall temperature, 
T,, is a strong function of the Rayleigh number. The 
higher the Rayleigh number, the smaller is the rate of 
change in T, (Fig. 4). 

Generally, the temperature, 0,, at any given location 

Z, increases with A (Fig. 4a), the change being minimal 
at Z = 0. Owing to the low velocities in the left top 
corner and the adiabatic boundary condition at the top 

wall, the temperature gradient, #,/aZ, near the top 
edge is much sharper for larger aspect ratios. 
Furthermore, for any fixed values of &* and A, the 
dimensionless temperature, Q,, decreases substantially 
with the increase in curvature (Fig. 4b) primarily 
because an increase in radius ratio for fixed D is always 
associated with an enhancement in the ratio of outer 
and inner surface areas. Another interesting effect of the 
radius ratio is the smoothening of temperature profile. 
The temperature gradient, S(,,/aZ, is observed to 
decrease with an increase in K. For low &*, the 
temperature, ~9,, is almost constant for a large portion 
of the inner wall when the radius ratio is large (see the 
curve for z* = lo’, K = 20). Even at high Rayleigh 
numbers, such as z* = 104, the gradient i30,.,/~3Z is 
very small when the curvature effects are strong. The 
sharp temperature gradients near the top and bottom 
edges are also modified by an increase in K (Fig. 4b). 

From the abovediscussion,it can be easily concluded 

that the peak temperature, Q,,,.,, increases with the 
Rayleigh number and/or the aspect ratio, but 
continually decreases with an increase in radius ratio. 
Since the mean temperature on the heated wall, O,, is 
usually known (to be discussed later), an appropriate 
way to study the variation in Qmax may be to consider a 
normalized peak temperature 0,,,/0,. The tabulated 
values oft?,,,/&,, (Table 2), indicate that the normalized 
peak temperature continually increases with &*, but 
decreases with an enhancement in the curvature. The 
effect ofaspect ratio is not straight-forward. Depending 
on & *, there exists an aspect ratio for which the peak 
temperature is the largest. The higher the Rayleigh 
number, the smaller is the aspect ratio for (0,,,/f?,),,, 
(Table 2). For the present range of parameters the 

Table 2. Variation in the normalized peak temperature, 0_,/0, 

A K 20 
IG* KZ* 

102 103 IO4 K A 20 lo2 103 lo4 

2 1.330 1.548 1.804 1.805 1 1.125 1.387 1.734 1.930 
3 1.269 1.489 1.743 1.743 2 1.221 1.511 1.811 1.879 

10 5 1.192 1.413 1.665 1.665 5 5 1.231 1.532 1.762 1.768 
10 1.107 1.303 1.565 1.574 10 1.192 1.413 1.665 1.665 
20 1.055 1.203 1.389 1.502 20 1.145 1.291 1.479 1.594 
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normalized peak temperature is maximum when &* 4- 

= lo4 and K = 1. The upper bound for this temperature 
ratio is, thus, 1.932 which exists at A = 1 [lo]. In 
general, the peak temperature, 0,,,, will never exceed 
28, as long as R7i * < lo4 and A > 1. 3- 

4.3. Local heat transfer rate 
A quantity of practical interest is the local heat flux 

on the cold wall, 
2- 

4,/q = -aojaR at R = 1. (4) 

This normalized local heat flux is presented in Fig. 5 for 
A = 1 and 10. It is observed that a large percentage of 

l- 

heat is rejected within a small distance from the top edge 
when the radius ratio is small. An increase in radius 

I I I 

pd] 

---A=, 

- A=10 

7-p I 

ratio results in lower heat flux near the top edge whereas 
an increase in aspect ratio has the reverse effect. The 
taller thecavity, thelarger is the fraction ofheat rejected 
near the top edge (Fig. 5). The local heat flux in the top 
region further increases with the Rayleigh number [lo]. 

0 
0 0.2 0.4 0.6 0.8 1.0 

z 

FIG. 5. Variation in local heat flux on the outer wall. 

4.4. Heat transfer results 
obtained as 

Based on the mean temperature difference T,, i - T,, 

an average Nusselt number on the inner wall is 
Nu = l/e, = 1 @(O, 2) dZ. (5) 
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This Nusselt number can be directly used to compare 
the present heat transfer rates with those for the 

design purposes because it gives the mean temperature, 

isothermally heated annulus by obtaining a Rayleigh 
0,, [equation (6)] which, in turn, provides the order of 

number based on the mean temperature difference, 
temperatures to be encountered for any particular 

%&i-TOT,, 
values of fi*, A and rc. The bounds of the temperature 
are then known. 

Ra* = R<*JNu. (6) 
Figures 6a-e present the average Nusselt number, 

Secondly, this Nusselt number is also important for 
Nu, for A = 1, 2, 5, 10 and 20. At very low Rayleigh 
numbers (conduction regime), the Nusselt number 

30 

IO 

NU 

5 

I 
5 IO 20 

K 

(cl 

,,(3,.,,,,,, 

5, IO’ 

(e) 
FIG. 6. Curvature effects on average Nusselt number, Nu, on the inner wall, (a) A = 1, (b) A = 2, (c) A = 5, 

(d) A = 10, and (e) A = 20. 
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approaches the conduction value, (K - l)/ln (K), for all 
aspect ratios. An increase in Rayleigh number is always 
associated with the increase in heat transfer rates, but 
the rate of increase strongly depends on the aspect and 
radius ratios, particularly for small Rayleigh numbers. 
The higher the values of A and K, the lower is the rate of 
increase in Nu with i&* primarily because the flow 
regimes get extended (in terms of z*) when the aspect 
and radius ratios are increased [6]. In fact, Nu is almost 
constant up to z* = 200 when A = 20 and K = 10 or 
A = 10 and K = 20. 

The above extension in the conduction and asymp- 
totic flow regimes (refer to [13, 141 for the defini- 
tions) delays the start of the boundary-layer regime. The 
higher the aspect and/or radius ratios, the larger is 
the Rayleigh number required for the boundary-layer 
flow regime to start. The flow regime criteria for the 
isothermally heated annulus [6] can be conveniently 
used for the present problem without any appreciable 
error. 

In the boundary-layer regime, the slope of the In (Nu) 
vs In (& *) curve is almost constant, though the effects 
of A and K on this slope cannot be ruled out. It is thus 
possible to obtain a correlation as 

Nu = CR<*” A-” I@’ (7) 

where exponents m, n and p, and constant C may 
depend on E*, A and K. This correlation may further 
be modified to provide a relation between the Nusselt 
and Rayleigh numbers based on the temperature 
difference : 

Nu = C, Ra*?A-“d, (8) 

where C, = C”(‘-m), r = m/(1-m), s = n/(1-m) and 
t = p/(1 -m). 

Curvature effects. It is evident from Figs. 6a-e that the 
heat transfer rate increases with the curvature. This 
increase in the Nusselt number has been caused by the 
reduction in the effective sink temperature for the inner 
boundary layer when Kis increased beyond unity, and is 
consistent with the modifications in the temperature 
and flow fields (Section 4.1). 

To characterize fully the curvature effects, the 
Nusselt numbers for A = 5 are plotted against K in Fig. 
6c. For pure conduction, the slope of this curve 
continually increases with K. However, an increase in 

Ra* reverses this behavior provided the aspect and 
radius ratios are not large such that the convective flow 
is in the conduction regime. For example, an increase in 
&* from zero to 50 results in a substantial decrease in 
the slope at K = 1, but when K > 15, the slope is very 
close to that obtained for pure conduction (Fig. 6~). At 
high Rayleigh numbers, the slope of this curve 
continually decreases with an increase in K provided the 
boundary-layer flow is maintained throughout. 

Since the slope of ln (Nu) vs ln (K) curve varies in a 
complex manner with &*, A and K, this slope has been 
calculated for 1 < K < 20, and A = 1 and 10 and is 
presented in Table 3. It may be noted that this slope is 
equal to the exponent p in equation (7), and has been 
obtained by computing Nusselt numbers for two close 
values of K corresponding to each radius ratio listed in 
Table 3. For pure conduction, p monotonically 
increases from 0.501 at K = 1 to 0.719 at K = 20, 
whereas an increase in &* results in a decrease in p 
until the boundary-layer flow is established. For 
example, when A = 10 and K = 1, p decreases to 0.296 
at & * = 103, beyond which the change is minimal. For 
a square annulus, A = 1, the exponent p decreases to 0.3 
at &* = 104, a value close to 0.296. When the radius 
ratio is increased beyond unity, the slope is found to be 
no longer constant at high &*. In fact, a close look at 
the decreasing p when Rli* is increased, indicates that 
the exponent p asymptotically approaches a constant 
value for any fixed aspect and radius ratios. The 
asymptotic values ofp are 0.296 and 0.269 for K = 1 and 
1.2, respectively. For K = 1.5, it may be very close to 
0.232. However, the present calculations do not provide 
the asymptotic value of p for K > 1.5. 

The effects of aspect ratio on the slope of In (Nu) vs 
ln (K) curve strongly depends on the convective flow 

regime or G*. If the Rayleigh number is very high such 
that the boundary-layer flow is maintained irrespective 
of the aspect ratio, the exponent p is observed to be a 
weak function of A. For example, when &* = lo4 and 
K = 2, p is equal to 0.208 and 0.203 for A = 1 and 10, 

respectively (Table 3). This is not true if the curvature 

effects are strong. At K = 4, p is larger for A = 10 than 
that for A = 1. The difference further increases with an 
increase in K, and is primarily because an increase in 
height-to-width ratio beyond a certain value reverses 
the boundary-layer flow regime to the asymptotic 
regime for fixed &* and K. The change in flow regime 

A Ra*lu 1 1.2 1.5 1.75 2 2.5 3 4 5 7 10 15 20 

Conduction 

1 to2 
lo4 

lo2 

10 ;;: 

lo5 

Table 3. Slope of In (Nu) vs In (K) curve [exponent p in equation (7)] 

0.501 0.515 0.534 0.546 0.557 0.575 0.590 0.612 0.629 0.653 0.677 0.702 0.719 
0.307 - 0.295 - 0.296 0.299 0.303 0.311 0.328 0.377 0.429 0.470 0.487 
0.300 0.273 0.241 0.223 0.208 0.186 0.171 0.154 0.146 0.142 0.147 0.164 0.183 

0.319 - 0.324 - 0.339 0.358 0.384 0.426 0.458 0.507 0.541 0.548 0.550 
0.296 - 0.243 - 0.234 0.224 0.232 0.245 0.263 0.289 0.350 0.413 0.457 
0.296 0.269 0.236 0.217 0.203 0.181 0.170 0.159 0.161 0.169 0.198 0.238 0.276 
0.296 0.269 0.232 0.209 0.191 0.164 0.146 0.124 0.114 0.109 0.116 0.138 0.160 
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0.1 ’ I I 
1 2 5 IO 20 

K 

FIG. 7. Variation in exponent p [equation (7)] with the radius 
ratio. 

from the boundary layer to asymptotic, with an 
increase in A is well established in literature for the 
vertical cavities, IC = 1 [13]. 

An interesting aspect of the curvature effects is the 
strong dependence of p on the radius ratio. Though p 
always increases with K at i&i* = 0, the behavior is just 
the reverse when the Rayleigh number is high. In the 
boundary-layer regime, the slope p is observed to 
decrease with an increase in K; p being largest at K = 1 
(Fig. 7 and Table 3). When &* = lo5 and A = 10, p 
asymptotically decreases from 0.296 at IC = 1 to 0.109 at 
IC = 7 whereas for &* = lo4 and A = 1, the change in 
p is from 0.3 to 0.142. This clearly implies that the rate of 
increase in the Nusselt number diminishes with an 
enhancement in the curvature effects. However, the 
exponent p does not decrease forever. In fact, p starts 
increasing when the radius ratio is increased beyond a 
certain value (Table 3 and Fig. 7). This reversal in the 
diminishing effect of K is caused by the change in the 
flow regime from the boundary layer to asymptotic. 
The critical radius ratio for this change in the flow 
regimes is characterized by ap/& = 0, and is a strong 
function of &* and A. The smaller the Rayleigh 
number and/or the higher the aspect ratio, the smaller is 
the value of this critical radius ratio. 

Fortuitously, the curves for In (p) vs In (rc) exhibit 
straight line behavior (Fig. 7) when fi * is large and K is 
small, i.e. when the flow is in the boundary-layer regime. 
A correlation for p may thus be obtained as 

p = o.3051c-0~676 ) lc<4 (9) 

for R7i* = 10’ and A = 10. The above correlation 
predicts the tabulated values ofp within 0.7% except for 

K = 1 where the difference is 3%. At IC = 4, the predicted 
value is 4% lower than the numerical value. 

The above equation (9) presents a simple and explicit 
relation between p and K. Though this type of 
expression is always sought, it is difficult to obtain a 
generalized correlation for wide range of parameters 
since the constant and the exponent in equation (9) are 
complex functions of a*, A and K. This strong 
dependence of p on K is contrary to the observation of 
Thomas and De Vahl Davis [ 143 and others that p is a 
constant for the natural convection in a fluid-filled, 
vertical annulus. Furthermore, the Rayleigh number at 
which the flow regime changes, also depends on 
the radius ratio. For fixed values of &* and A, the 
boundary-layer flow regime at JC = 1 changes to the 
asymptotic regime and then to the conduction regime 
as the radius ratio is increased. This also does not agree 
with the observation [14] that the flow regime criteria 
are independent of the radius ratio. 

Effects of aspect ratio. As is well-established, the 
Nusselt number for a vertical cavity (r~ = 1) decreases 
with an increase in the aspect ratio beyond a certain 
value between 0.5 and 2, which is a function of the 
Rayleigh number [13]. The higher the Rayleigh 
number, the lower is the aspect ratio for (Nu),,,. A 
change in the heated wall boundary condition from the 
constant temperature to the uniform heat flux does not 
produce any appreciable effects on this behavior [lo]. 
Evidently, the slope of In (Nu) vs In (A) curve or the 
exponent n in equation (7) for fixed Rli * and K, is zero at 

Acritical. 
To visualize the effects of radius ratio on the 

functional relationship of Nusselt number with A, the 
exponent n has been listed in Table 4 for IE = 1 and 10. It 
is observed that the critical aspect ratio for (Nu),,, is 
less than unity when E * = lo4 and K = 1. An increase 
in the radius ratio for fixed i&i* further reduces the 
value of Acritical (Table 4, also [7]). Furthermore, the 
absolute value of n always increases with the aspect 
ratio when the flow is in the boundary-layer regime 
(Table 4). The rate of increase in n, i.e. an/aA, is highest 
at Acritical and is observed to decrease when the height- 
to-width ratio increases. This reduction in anJaA is 
essentially a result of the diminishing end effects at 
higher aspect ratios. In fact, n increases from 0.092 at 
A = 1 to 0.342 at A = 50 when IC = 1. It may be noted 
that Prasad and Kulacki [lo] have reported an 
average value of n = 0.328 based on the computations 
for A = 5, lo,20 and 50. 

Table 4. Slope of In (Nu) vs In (A) curve [exponent n in equation (7)] 

K E*JA 1 1.5 2 3 4 5 7 10 20 50 

1 IO4 0.092 0.188 0.237 0.277 0.295 0.307 0.317 0.323 0.333 0.342 

lo3 0.012 0.106 0.165 0.201 0.226 0.230 0.236 0.226 0.203 0.151 
10 104 0.131 0.205 0.240 0.264 0.275 0.282 0.285 0.285 0.283 0.272 

lo5 0.205 0.249 0.272 0.289 0.297 0.301 0.305 0.301 0.297 0.295 
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An increase in IC results in higher values of n for fixed 
&* and A. However, the asymptotic relationship 
between n and A does not change as long as the 
boundary-layer flow is maintained. Once, both the 
aspect and radius ratios are large such that the flow is no 
more in the boundary-layer regime for given fi*, the 
slope n starts decreasing. The gradient dn/aA = 0 may 
thus characterize the change in flow regime from the 
boundary layer to asymptotic. 

4.5 Comparison with cylinder solutions 
As already reported [6,7], the heat transfer rate for 

an annulus asymptotically approaches that for a 
vertical cylinder embedded in an infinite medium at T, 
when the radius ratio is increased beyond unity. This 
behavior is consistent with the observed effects of 
curvature on the temperature field. As noted earlier, the 
effective sink temperature for the inner boundary layer 
decreases very fast with an increase in K, approaching 
very close to T, at large values of K. Evidently, the effect 
of the outer wall on the heat transfer at the inner surface 
is minimal at large radius ratios. This diminishing effect 
of the presence of outer wall is also exhibited in Fig. 6c 

where p -+ a constant value when K --) co. However, for 
the annulus results to be close to the cylinder solutions, 
the end effects should be small. In can thus be expected 
that the difference between the two results will decrease 
as A -+ a. It is important to note that the above 
behavior is true only when the convective flow is in the 
boundary-layer regime. 

To substantiate the above qualitative discussions 
and to study the effects of Ra *, A and K on this aspect of 
the annulus results, the heat transfer results are 
compared with the cylinder solutions obtained from 
Minkowycz and Cheng [15] in Figs. 8a and b. Here, 

(Nu),,, is observed to be 29% higher than Nu when 
K = 2, A = 10 and Ra* = 103. The variation reduces 
to only 10% at rc = 5 and to 2.2% at K = 20. However, 
the difference at K = 20, increases to 16% when the 
Rayleigh number is reduced to 110. These results 

clearly exhibit that Nu -+ (Nu),,, when Ra* and K --* co. 
As noted earlier, the slope of In (Nu) vs In (K) curve, p, 
decreases logarithmically [equation (9)], i.e. p 
asymptotically approaches zero as K -+ co. It is 
interesting to note that a similar behavior is exhibited 
by the solutions for the embedded cylinder [15]. 

The effect of aspect ratio on the difference between 
Nu and (Nu),,, can be observed in Fig. 8b. Here, (Nu),,, 
is 25y0 higher than NM when Ra* = 500, PC = 10 and 
A = 1. The agreement is within 6% at A = 5, and 
within 13% at A = 20. It may thus be concluded that 
Nu + (NIL),,,, as the aspect ratio is increased. A larger 
difference at A = 20 is essentially due to the fact that 
Ra* = 500 is not sufficient to maintain the boundary- 
layer flow at K = IO and A = 20. In fact, an increase in 
Ru* to 5 x 1 O3 reduces the difference to only 5% at A = 20. 
Hence, the higher the aspect ratio, the smaller is the 
difference between Nu and (Nu),,. The only constraint to 
this behavior is that the boundary-layer flow must exist on 
theinner wall. From these results (Figs. 8a and b), it is easy 

10 

N” 

5 

2 L___s--+“‘-;d__--+ _- 
102 

m* 
103 

(a) 

20 

N” 

,. 

7 

4 
102 2 ‘? ‘IO’ 2 4 6 

(b) 
FIG. 8. Annulus results compared with the cylinder solutions [15] 

for (a) A = 10, and (b) K = 10. 

to conclude that the Nusselt number for the annulus is 
very close to that for the embedded cylinder when 
Ra* > 500, A > 5 and K > 10 provided the flow is in the 

boundary-layer regime. 

4.6. Constant temperature OS constant heatjfux 
To characterize the effects of heated wall boundary 

condition on the overall heat transfer rate, the present 
Nusselt numbers are compared with those for the 
isothermally heated annuli in Figs. 9a and b. As 
expected, the two Nusselt numbers are equal when the 
flow is in the conduction regime. An increase in 
Rayleigh number enhances the heat transfer rates for 
both types of heating, but the rate of increase is larger in 
the case of constant heat flux. This agrees with the 
general observation that the Nusselt number for a 
cavity is higher for the uniform heat flux boundary 
condition [lo]. It must be noted that the above 
conclusion is based on the consideration that (T,, i - To) 
is equal to ( TS,, - T,). The higher rate of heat transfer in 
the present case, is consistent with the modification in 
temperature field owing to a change in the boundary 
condition from the constant temperature to a constant 
heat flux. 

For fixed values of A and K, the In (Nu) vs In (Ra*) 
curves for the two types of heating are observed to be 
almost parallel beyond a certain Rayleigh number 
(Figs. 9a and b). It is thus evident that the exponent r in 
equation (8) is a weak function of the heated wall 
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FIG. 9. Effects of the heated wall boundary conditions on Nusselt number (a) A = 10, and (b) K = 2. 

boundary condition once the flow is in the boundary- 
layer regime. The Nusselt number plots for various 
values of A and K: (Figs. 9a and b) further indicate that 
the aspect and radius ratios do not have any 
appreciable effect on the exponent r. In fact, for a tall 
cavity (A > 2, IE = 1) heated by applying a uniform heat 
flux, Prasad and Kulacki [lo] have obtained I = 0.527 
which is very close to the value of T (0.52 or 0.5) for the 
isothermal heating [6 and others]. 

It can further be observed from Fig. 9a that the 
difference between Nu and Nuiso decreases with an 
increase in the radius ratio. For A = 10, Ra* = lo3 and 
K = 1, Nu is 30% higher than Nuiso whereas the 
difference is only 12% when IC is increased to 10. This has 
directly followed from the temperature distribution on 
the inner wall. In Fig. 4b, the temperature gradient, 
HMT 29:6-C 

a&,/aZ -+ 0 as K --f co except for small distances from 
the top and bottom edges. Thus, the asymmetries in the 
flow, due to the constant flux boundary condition, 
become indistinct when K --t co. 

The effect of aspect ratio on (Nu - Nui,,) is just the 

reverse. The higher the aspect ratio, the larger is Nu 
compared to Nui,,. For K = 2 and Ra* = 800, Nu is 9% 

higher than Nuisoat A = 1. When A is increased to 5, the 
difference is 22% which further increases to 28% at A 
= 20. These variations in (Nu - Nui,) clearly indicate 
that the exponents s and t in equation (2) depend on the 
heated wall boundary condition. 

4.7. Heat transfer correlations 
Generalized heat transfer correlations of the form of 

equations (7) and (8) are always important for design 
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Table 5. Exponents m and n, and constant c for equation (10) 

Maximum 
K A c In n E* > oA error 

1t 2 
5<A<50 

1 
2 2 

5<A<20 

3 2 
5<A<20 

1 
5 2 

5<A<20 
1 

10 2 
5<A<20 

20 5<A<lO 

0.312 0.413 0 100 1.66 
0.411 0.368 0 100 0.75 
0.662 0.345 0.328 500 2.00 
0.430 0.393 0 100 1.00 
0.520 0.359 0 100 0.58 
0.812 0.339 0.319 500 1.60 
0.512 0.382 0 100 1.97 
0.589 0.354 0 200 0.29 
0.917 0.333 0.311 500 2.01 
0.617 0.371 0 200 1.21 
0.719 0.340 0 200 0.69 
1.096 0.320 0.301 500 1.69 
0.873 0.344 0 200 2.31 
0.989 0.316 0 5003 0.73 
1.512 0.293 0.279 1000 2.42 
2.052 0.269 0.244 1000 3.10 

t Results for vertical cavity (K = 1) are taken from ref. [lo]. 
$ For A > 10, z* > 103. 

purposes, and any studies such as the present one 
attempt to obtain them. But the task is not easy in the 
present case owing to complex functional relationship 
between the exponents and the governing parameters. 
However, an equation of the form : 

-- 
Nu=CRa*“A-“, forafixedK (10) 

has been used to correlate the present results for K = 1, 

2,3,5 and 10. The values of m, n and c are presented in 
Table 5 with the range of Rayleigh number and aspect 
ratio to which they are applicable. 

5. CONCLUSION 

Numerical results for the natural convection in a 
vertical, porous annulus with the constant heat flux on 
the inner wall, indicate the following : 

Introduction of curvature disturbs the centro- 
symmetric properties of the isothermally heated, 
vertical cavity and results in lower effective sink 
temperature for the heated wall boundary layer. It 
enhances the stratification in the upper region of the 
enclosure and results in higher velocities near the 
top edge of cold wall. A change in the boundary 
condition from the constant temperature to the 
constant heat flux further strengthens this behavior. 
The heated wall temperature, 8,.,, increases with 
Rayleigh number but the change in actual 
temperature T, depends on how fi* is changed. 
The temperature BW at any location decreases with 
an increase in radius ratio, but increases with the 
aspect ratio. 
The peak temperature, (Q,,,, increases with the 
Rayleigh number whereas the radius ratio affects it 
in an opposite manner. However, there exists an 
aspect ratio as a function of Ra* and K for which this 
peak temperature is maximum. The upper bound for 
this temperature is 28,, for 1 < A < 20. 

4. The overall Nusselt number increases with an 
increase in the radius ratio, but the rate of increase 
diminishes as IC + cc. The exponent of IC in equation 
(7), p, is a complex function of % *, A and K. In the 
boundary-layer regime, p decreases logarithmically 
with the increase in IC. 

5. The above diminishing effect of K brings annulus 
results close to the cylinder solutions provided the 
flow is in the boundary-layer regime. Generally, 
the two results can interchangeably be used with 
a reasonable accuracy for Ra* > 500, A > 5 and 
K> 10. 

6. The heat transfer rate for the constant flux case is 
higher than that for the isothermal heating. In 
boundary-layer regime, the difference (Nu - Ny,,)/ 
Nuiso is almost constant. But an increase in the 
aspect ratio enhances this difference whereas the 
radius ratio has an opposite effect. 
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ETUDE NUMERIQUE DE LA CONVECTION NATURELLE DANS UN ESPACE 
ANNULAIRE POREUX ET VERTICAL AVEC FLUX SURFACIQUE CONSTANT SUR LA 

PAR01 INTERNE 

R&sum&Des solutions numeriques de convection naturelle dans un espace annulaire vertical, poreux sont 
don&es pour le cas de la paroi interne chauffke g densit& de flux uniforme. Ces conditions conduisent g un 
transfert thermique plus grand que pour le chauffage isotherme. Plus grand est le rapport de forme, plus 
marquCe est cette diffkrence tandis que l’effet du rapport des rayons est contraire. Bien que le transfert 
augmente avec la courbure, l’exposantp dans Nu = C &*"A -“~Pest une fonction forte du rapport des rayons 
K. Dans le rCgime de couche limite,p dicroit logarithmiquement g partir d’une valeur maximale pour K = 1. 
Ceci am&e les rtsultats de l’espace annulaire proches de ceux du cylindre pour les grands rapports des rayons. 

Le pit de temptrature dans l’enceinte ne d&passe jamais deux fois la temptrature moyenne. 

NUMERISCHE UNTERSUCHUNG DER NATtJRLICHEN KONVEKTION IN EINEM 
PORijSEN RINGRAUM MIT KONSTANTEM WARMESTROM AN DER INNENWAND 

Zusammenfassung-Fiir die natiirliche Konvektion in einem senkrechten, pordsen Ringraum werden fiir 
den Fall konstanten W&mestroms an der Innenwand numerische Lasungen angegeben. Im Vergleich zur 
isothermen Innenwand fiihrt diese Anordnung zu einem verbesserten Wlrmeiibergang. Je grijBer das 
VerhLltnis von Hiihe zu Spaltweite ist, desto gr6l3er wird die Differenz zwischen den bciden F%llen; dagegen 
bewirkt eine VergriiDerung des Verhlltnisses von A&en- zu Innenradius das Gegenteil. Obwohl der 
WCrmeiibergang mit zunehmender Kriimmung besser wird, ist der Exponent p in der Gleichung 
Nu = C Ra*“A -“I@ stark vom RadienverhLltnis K abhgngig. Im Grenzschichtbereich nimmtp logarithmisch 
ab, sein Maximum liegt bei IC = 1. Dies fiihrt dazu, dal3 die Ergebrisse fiir den Ringraum fiir grol3e 
Radienverhlltnisse denen beim Zylinder gleichen. Die maximale Temperatur im Ringraum iibersteigt die 

mittlere nie urn mehr als einen Faktor 2. 

gMCJlEHHOE BCCJIEfiOBAHWE ECTECTBEHHOB KOHBEKqHki B BEPTHKAJTbHOM 
HOPkiCTOM KOJIbqEBOM CJIOE C I-IOCTOxHHbIM TEl-IJIOBbIM IIOTOKOM HA 

BHYTPEHHER CTEHKE 

hlHOTaUH~-%WIeHHbIe ~IEHUR 3aLla'iU eCTeCTBCHHOti KOHBeKUUU B Be,,TUKanbHOM KIOPUCTOM KOnb- 

L,eBOM CJIOe IIpenCTaBJIeHbILWI CJIy'IaSI,KOrna BHyTPeHHSIHCTeHKa HarpeBaeTCR "OCTOIHHbIM Te"JIOBbIM 

IIOTOKOM.3TO IIpUBOnUT K 6onbmeiiCKOpOCTU TeIIJIOO6MeHa IIOCPaBHeHUlO C U30TePMU‘ieCKUM narpe- 
BOM, npU'IeM pa3JIU'IUe TCM 6onbme, SCM 6onbme OTHOIWHUC BblCOTbI K pWU)‘Cy, B TO BPCMS KaK 

OTHOIIICHUC PanUyCOB OKa3bIBaCT 06paTHoe BJIUIIHUB. XOTI~ CKOPOCTb TeIlJIOIIepeHOCa yBenuwiBaeTcn C 

K,,UBU3HOti,LIOKa3aTeJIb CTCIICHU p B BbIpawteHUU Nu = CRa*“A-“KP CyIWCTBeHHO JaBUCUT OT OTHOIIIC- 

HUII PanUyCOB K. B PEKUMC IlOrpaHFIHOrO CJIOII p yMeHbWaeTC$I JIOrapU@MWIeCKU OT MaKCUMWIbHOrO 

3Ha'lCHUR, COOTBCTCTByICWCI-0 K= 1. 310 c6nemaeT pe3yJIbTaTbI LI,.WI KO,IbI(eBOrO C,IO,I IIPU 6onbmUx 

OTHOIUeHUllX PaAUyCOB C LIaHHbIMU AJISI WiJIUHApa. MaKCUMyM TeMIIepaTy,,bI B JaMKHyTOM o6aeMe 
mfKorna ne npesbnnaeT ynaoennym cpenmooro TebmepaTypy. 


